Stochastic Integrals in Abstruct Wiener Space II: Regularity Properties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Properties of Some Stochastic Volterra Integrals with Singular Kernel

We prove the Hölder continuity of some stochastic Volterra integrals, with singular kernels, under integrability assumptions on the integrand. Some applications to processes arising in the analysis of the fractional Brownian motion are given. The main tool is the embedding of some Besov spaces into some sets of Hölder continuous functions.

متن کامل

Regularity Properties of Some Stochastic Volterra Integrals with Degenerate Kernel

We derive sampleepaths continuity results for some sto-chastic Volterra integrals with degenerate kernel under integrability assumptions on the integrand. Some applications to processes arising in the analysis of the fractional Brownian motion are given. Embeddings of Besov spaces into sets of HHlder continuous functions are the key elements. RRSUMM. Nous montrons la continuitt trajectorielle d...

متن کامل

A Change of Scale Formula for Wiener Integrals of Cylinder Functions on the Abstract Wiener Space Ii

We show that for certain bounded cylinder functions of the form F(x) = μ̂((h1,x)∼, . . . ,(hn,x)∼), x ∈ B, where μ̂ :Rn → C is the Fourier-transform of the complexvalued Borel measure μ on (Rn), the Borel σ -algebra of Rn with ‖μ‖ < ∞, the analytic Feynman integral of F exists, although the analytic Feynman integral, limz→−iq Iaw(F ;z)= limz→−iq(z/2π) ∫ Rn f( →u)exp{−(z/2)| →u|2}d →u, do not alwa...

متن کامل

Brownian excursions, stochastic integrals, and representation of Wiener functionals

A stochastic calculus similar to Malliavin’s calculus is worked out for Brownian excursions. The analogue of the Malliavin derivative in this calculus is not a differential operator, but its adjoint is (like the Skorohod integral) an extension of the Itô integral. As an application, we obtain an expression for the integrand in the stochastic integral representation of square integrable Wiener f...

متن کامل

Cumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals

The classical combinatorial relations between moments and cumulants of random variables are generalized into covariance-moment identities for stochastic integrals and divergence operators. This approach is based on cumulant operators defined by the Malliavin calculus in a general framework that includes Itô-Wiener and Poisson stochastic integrals as well as the Lie-Wiener path space. In particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1973

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000015592